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Abstract— For robots navigating in dynamic environments,
exploiting and understanding uncertain human motion pre-
diction is key to generate efficient, safe and legible actions.
The robot may perform poorly and cause hindrances if it does
not reason over possible, multi-modal future social interactions.
With the goal of enhancing autonomous navigation in cluttered
environments, we propose a novel formulation for nonlinear
model predictive control including multi-modal predictions
of human motion. As a result, our approach leads to less
conservative, smooth and intuitive human-aware navigation
with reduced risk of collisions, and shows a good balance
between task efficiency, collision avoidance and human comfort.
To show its effectiveness, we compare our approach against the
state of the art in crowded simulated environments, and with
real-world human motion data from the THÖR dataset. This
comparison shows that we are able to improve task efficiency,
keep a larger distance to humans and significantly reduce the
collision time, when navigating in cluttered dynamic environ-
ments. Furthermore, the method is shown to work robustly
with different state-of-the-art human motion predictors.

I. INTRODUCTION

Planning legible and safe yet efficient trajectories in
human-shared environments is challenging due to the in-
trinsically stochastic nature of human motion. Recent works
show that keeping a safe and conservative distance from
humans, based on the reachable space, is a workable ap-
proach for collision avoidance that can provide strong safety
guarantees [1]–[5]. However, this strategy may yield very
cautious robot behavior since the robot will always assume
the worst-case scenario instead of reasoning on future human
intentions and behaviors.

Using more informed motion predictions may reduce this
conservativeness by providing the robot with an educated
guess on the future movement of humans and thereby letting
it plan its motion in a less constrained space.

Nonlinear model predictive control (NMPC) is a widely
used method for local motion planning and control of au-
tonomous mobile robots [7]–[9]. Several NMPC approaches
use constraints on the maneuverable space according to
the current and predicted position of humans [10], [11].
However, constraining NMPC can make it hard to find a
feasible solution to the motion planning problem in cluttered
dynamic environments [10].
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Fig. 1: (a) Image from the the THÖR dataset [6] which is used
to evaluate our multi-modal prediction aware motion planning
approach. (b) An exemplary scenario from our experiments with
the robot (green) navigating amongst multiple humans (blue).
The local motion plan (red) is generated by the NMPC method
using our novel collision avoidance cost for stochastic multi-modal
predictions.

A recent trend in human-motion forecasting is to adopt
multi-modal predictions [12] to better account for the un-
certainty in intent and direction of movement. While there
are methods that include multi-modal human motion pre-
dictions in NMPC [11], successfully doing so in cluttered
dynamic environments remains a challenge. This is because
complex situations potentially cause constraint-based NMPC
approaches to freeze the robot (i.e., stopping the robot) due to
a large number of collision avoidance constraints being active
at the same time (e.g., due to optimizers returning infeasible
solutions). This is even more common when multi-modal
human motion predictions are considered. In this work, we
improve on the state of the art by utilizing a multi-modal-
aware collision-avoidance-cost, without imposing constraints
based on predictions. Our hypothesis is that this greatly
reduces the risk of a freezing robot when using multi-
modal predictions and increases its ability to actively avoid
collisions.

To this end, we introduce the Multi-Modal Collision
Avoidance NMPC (MMCA-NMPC), a novel model-based
predictive planning approach for robot navigation in crowded
spaces. MMCA-NMPC utilizes a new collision avoidance
cost formulation based on stochastic multi-modal human
motion predictions and is agnostic to the human motion
prediction method. We systematically compare our approach
against state-of-the-art methods using a real-world human



motion dataset and interactive simulations in complex en-
vironments. The results show that our method significantly
outperforms the baselines if one considers the combined per-
formance in task efficiency, human awareness, and collision
avoidance.

II. RELATED WORK

Early methods for collision avoidance include model-
based techniques that do not consider predictions of humans,
one the most popular being Dynamic Window Approach
(DWA) [13]. Lately there has been an increasing interest in
MPC techniques for collision avoidance [7], [9], [14], [15].

In this work, building on our previous results [7], [12],
[15], we shift our attention towards the utilization of stochas-
tic, multi-modal predictions, which are better suited to
represent the complexity of erratic and dynamic environ-
ments. We formulate a cost term by applying ideas from
Chance-Constrained NMPC (CC-NMPC) to the concept of
multi-modal human motion prediction. CC-NMPC was first
investigated by Blackmore et al. [16] for static obstacle
avoidance and extended more recently in [10], [17] to handle
dynamic obstacles like humans. Zhu et al. [10] apply CC-
NMPC for motion planning and collision avoidance of micro
aerial vehicles. A similar approach is presented by Castillo-
Lopez et al. [17]. While CC-NMPC achieves good results
in terms of efficiency and safety, these methods work with
uni-modal Gaussian predictions and are not evaluated in
complex, cluttered, and dynamic 2D environments.

Several approaches have exploited multi-modal human
motion predictions for generating robot motion [8], [11],
[18], [19]. Schmerling et al. [18] and Schaefer et al. [8]
use NMPC formulations which include interactions between
the agents in the scene. Schaefer et al. [8] specifically penal-
ize predicted human-robot interactions. However, differently
from our approach, their method is limited to multi-modal
predictions that depend on, and are differentiable with respect
to, the robot’s future controls and only perform explicit col-
lision avoidance in specific situations. Nair et al. [11] use a
multi-modal version of the chance constraint, but they do not
evaluate their approach in cluttered environments. Similarly
to Schaefer et al. [8] and Kamel et al. [20], our approach
is designed for minimally-invasive robot navigation, and it
can be fine-tuned to reduce the conservativeness of the robot
behavior. Differently from other methods that use multi-
modal predictions, our method directly considers the spacial
relation between the predicted modes of motion.

Several Deep Reinforcement Learning (DRL) approaches
learn a policy for navigation in crowded environments (e.g.,
GA3C-CADRL [21] or SA-CADRL [22]). Those approaches
learn human-aware robot behaviors, but differently from our
approach they often adopt a limited amount of predefined
discrete actions, thus do not completely account for the
dynamics of the robot and the environment.

III. BACKGROUND

In this section, we briefly review NMPC (Section III-
A) with different collision avoidance strategies (Section III-
B, and methods for multi-modal human motion predictions
(Section III-C).

A. Nonlinear Model Predictive Control

NMPC formulates a short-term motion planning problem
for a prediction horizon T as a nonlinear program. This
program is solved iteratively, and only the first control action
of the optimal solution is applied to the system at each
iteration. An overview of the numerical methods used to
solve optimization problems in NMPC is given by Rawlings
et al. [23] in Chapter 8. The stochastic nonlinear optimal
control problem solved at every NMPC iteration is defined
as:

min
x,u

J (x,u) (1)

s.t.: xt+1 = f (xt,ut) + ω ∀t ∈ [0, T − 1]

x0 = xm

ht(xt,ut) ≤ 0 ∀t ∈ [0, T ]

xt ∈ X ∀t ∈ [0, T ]

ut ∈ U ∀t ∈ [0, T − 1],

where xt ∈ X and ut ∈ U are the state and control of
the robot for a given timestep t, respectively. X ⊆ RNx

and U ⊆ RNu denote the state and control spaces. The
vector ω ∈ RNω denotes the process disturbances with zero-
mean Gaussian probability distributions and variance Σω .
J : RNx ×RNu → R1 is the chosen objective function. The
first constraint in Eq. 1 represents the (possibly nonlinear)
robot kinematics f(x,u). The measured initial state is given
as xm ∈ RNx . The function ht(x,u) : RNx × RNu → RNh

collects arbitrary inequality constraints.

B. Collision Avoidance in NMPC

To avoid collisions, NMPC needs to include information
about obstacles surrounding the robot. In dynamic environ-
ments, this information is time-dependent. To leverage this
information, one can define a collision avoidance constraint,
or include it as costs in the objective function.

1) Constraint-Based: Most recent work uses constraints
to enforce a minimum safety distance between the robot
and the humans at all times [10], [17], [20], [24], [25].
Such constraint-based approaches guarantee that the optimal
solution does not violate the defined constraints. However, a
high number of constraints also increases the computational
complexity of the nonlinear program. Most importantly,
constraints also introduce the possibility that the optimizer
is not able to find a solution to the program, thus resulting
in an infeasible iteration.

2) Cost-Based: While some of the above-mentioned ap-
proaches use slack variables to tie the constraints to the
objective functions, using a cost term to achieve collision
avoidance is less popular. Schaefer et al. [8] and Kamel et
al. [20] use a cost term to drive the optimal solution away
from the predicted obstacle positions. However, they do not
provide a cost formulation that explicitly uses generic multi-
modal predictions. A cost term in the objective function does
not impose any hard limits but results in a “the less, the
better” behavior. Thus, a cost term cannot provide formal
safety guarantees but cannot cause the nonlinear program to
be infeasible either.



C. Multi-Modal Human Motion Prediction

Rudenko et al. [12] show that the literature does not
provide an entirely consistent definition for multi-modal
motion predictions. In some cases, the multiple modes of
human motion reflect the possible intentions or paths towards
a goal [26]. Other authors use the term to refer to a multi-
modal probability distribution e.g., a Gaussian mixture model
(GMM) [27]–[29].

Remark 1: In this work, we consider a stochastic multi-
modal prediction of human states over the time horizon τ .
Thus, for each discrete timestep t ∈ [0, τ ] the predicted
human position pt = (x, y) is a random variable, drawn
from a multivariate GMM: pt ∼

∑Z
z=1 βz N (p̂z,t,Σz,t)

with mixture components z ∈ Z, mixture probability βz ,
mixture component mean p̂z and covariance matrix Σz .
Consequently, each mode of motion can be represented by
the sequence of the corresponding multivariate Gaussian
distributions.

It can generally be assumed, that the spatial configuration
of the mixture components in the GMMs is important when
interpreting the prediction and using it in the motion planning
problem. For instance, if the means of the different mixture
components have a large distance to each other but similar
probabilities, this corresponds to higher uncertainty in the
human intent.

IV. MULTI-MODAL COLLISION AVOIDANCE

Using constraint-based collision avoidance is a popular
approach when integrating human motion prediction into
NMPC [10], [17], [20], [24], [30]. However, this approach
may prove impractical for cluttered environments with a
high number of humans. Especially when navigating in a
cluttered and crowded 2D plane, having many active collision
avoidance constraints can easily lead to an infeasible NMPC
iteration. Infeasible iterations are typically handled by using
controls that stop the robot [10] as there is no safe, optimal
control action available. Using multi-modal predictions (as
in [11]) requires even more constraints on the state space,
causing a decrease in computational performance and a
higher likelihood of a freezing robot.

Importantly, the main benefit of constraints is that they
are able to give guarantees for the resulting solution to the
motion planning problem. This is important when discussing
the safety of an NMPC method. However, the guarantees
given by a collision avoidance constraint only hold if the
underlying prediction is absolutely accurate. If we do not
assume to have a perfect predictor, we are still left with an
unknown risk of collision which stems from the probability
that our prediction is wrong.

Because of the two arguments presented above, our
proposed NMPC formulation uses constraints only on the
current measured position of the humans at each timestep.
Additionally, we use stochastic multi-modal human motion
prediction to formulate a collision cost, therefore accounting
for the predicted human positions and actively avoid possible
collisions. Because we use a constraint only on the current
position of the humans, our approach is less effected by an
errornous prediction. In other words, we utilize predictions in

a way that cannot cause an infeasible NMPC iteration. This
ensures that the NMPC method will provide valid control
actions even in complex, cluttered, dynamic situations and
the robot will be able to actively participate in avoiding
collisions instead of being frozen. Our novel formulation of
a collision avoidance cost is inspired by the convex chance
constraint from [17] and uses multi-modal human motion
predictions, formulated as a sequence of GMMs, to find the
optimal robot trajectory.

A. Multi-Modal Collision Avoidance NMPC

Our novel Multi-Modal Collision Avoidance (MMCA-)
NMPC is described in Alg. 1 and 2. At each iteration we
solve the following nonlinear program (NLP):

min
xR,uR

Jg (xR,uR) + Jcol(xR,xH) (2)

s.t.: xR,t+1 = f (xR,t,uR,t) + ω ∀t ∈ [0, T − 1]

xR,0 = xR,m

‖p̂R,t − p̂i
H,0‖2 ≥ di ∀t ∈ [0, T ],∀i ∈ I

xR,t ∈ X ∀t ∈ [0, T ]

uR,t ∈ U ∀t ∈ [0, T − 1],

where xR,uR are the robot’s state and control vectors, T
is the prediction horizon and I is a set of all considered
humans. The subscripts ·R and ·H denote the association
of a variable · with the robot or a human, respectively.
Specifically, we use ·H = [·iH ]i∈H with ·iH being the value
of the variable · for human i. The symbol p describes
Cartesian coordinates (x, y) of a state vector x and is given
as a multivariate random variable p ∼ N (p̂,Σ). Thus, the
robot and humans positional distributions are denoted as pR

and pH respectively. Finally, we refer to di as the distance
between the robot and the human i.

The objective function in Eq. 2 is a linear combination
of the collision cost Jcol (xR,xH), detailed in Section IV-B,
and the goal cost:

Jg (xR,uR) =
‖xR,T − xR,g‖2S

ρg
+

T−1∑
t=0

‖xR,t − xR,g‖2Q
ρg

+ ‖uR,t‖2W , (3)

with Q, W , and S as diagonal matrices, weighting the stage
error, the control effort, and the terminal error, and xR,g as
the goal state. The scalar ρg = ‖xR,0 − xR,g‖2 normalizes
by the current squared distance from the robot to the goal
state.

Before solving the NLP, we use a motion prediction
method to generate a multi-modal motion prediction for
every human (see Alg. 2, line 1). We finalize the NMPC
iteration by applying the first element of the optimal control
sequence (see Alg. 1, line 4).

Since the collision cost term Jcol cannot guarantee safety,
we employ a constraint on each current human positions.
Importantly, we only constrain on the current position of the
humans, and not their predicted trajectory. As the positions
and therefore the constraints update frequently (e.g. 10 Hz),



Fig. 2: The cost maps resulting from Jcol(xR,xH) in Eq. 6 at predicted timesteps t = 25 (Top) and t = 15 (Bottom) in a scenario
with only one human with a three-modal human motion prediction of xH . The six columns show the cost maps for different triples of
the mode probability β{1,2,3} of xH with the specific values given in the legends. The three possible human modes are shown in yellow,
blue and green. The predicted position of the human xH at timestep t is marked with an ×. The cost maps are given over xR = (x, y),
and darker shade corresponds to higher cost. The different columns illustrate how our cost formulation allocates cost, dependent on the
individual mode probabilities. Note that a higher cost is allocated if more modes predict the human to be in the same area. If the modes
diverge but are equally likely, this uncertainty about the human’s intent and future trajectory results in a lower cost overall. The presence
of multiple humans will result in summing up their individual costs.

this means the robot is not able to actively cause a collision
by directly driving into a human. The constraint for all
timesteps t ∈ T is written as

‖p̂R,t − p̂i
H,0‖2 ≥ di. (4)

Similarly to [10], if the optimizer does not find a feasible
solution for an NMPC iteration, we use decelerate-to-stop
controls for that given iteration.

B. Multi-Modal Collision Avoidance Cost
Given a multi-modal human motion prediction with modes

z ∈ Z, as described in Section III-C, with βi
z as the

probability of mixture-component z from the prediction of
human i. We formulate a convex function that depends on the
state of the robot and a multi-modal human motion prediction
as follows:

c(xR,t,x
i
H,t) =

∑
z∈Z

βi
z

2∑
j=1

 p̂jR,t − p̂
i,j
H,z,t

di +
√(

σj
R,t

)2
+
(
σi,j
H,z,t

)2
2

,

(5)

where index j runs over the two Cartesian coordinates (x, y)
and with

(
σj
)2

as the variance in the respective dimension.
We then define the final collision avoidance cost as:

Jcol(xR,xH) =

T∑
t=0

I∑
i=1

g

c(xR,t,xi
H,t)

, (6)

with g as a gain that can be used to influence the conserva-
tiveness of the robot when engaging with humans.

A visual illustration of Jcol is shown in Fig 2. For highly
ambiguous situations, one planning iteration might yield an
optimal trajectory that can be potentially unsafe. However,
as only the first timestep of the trajectory is executed before
the entire situation is reevaluated, such ambiguity is resolved
by the subceeding NMPC-iterations.

Algorithm 1 MMCA-NMPC
Require: xR,g, ∆t . goal state, sampling time

1: while xR,m 6= xR,g do . goal reached?
2: xR,m ← GETCURRENTSTATE()
3: uR ← MMCA-NLP-ITERATION(xR,g, xR,m, ∆t)
4: CONTROLROBOT(uR,0) . apply control u0

5: end while

Algorithm 2 MMCA-NLP-iteration
Require: xR,g, xR,m, b, ∆t . goal state, measured state,

decelerate-to-stop controls, sampling time
1: xH ← GETMULTIMODALPREDICTIONS()
2: NLP ← PREPARENLP(xR,g, xR,m,xH , ∆t)
3: if NLP.ISFEASIBLE() then
4: uR ← NLP.SOLVE() . Solve NLP in Eq. 2
5: else
6: uR ← b . use decelerate-to-stop controls
7: end if
8: return uR

V. EVALUATION

In this section, we present the experimental setup and
the scenarios used in our evaluation. Furthermore, we detail
relevant performance metrics and the baselines (Section V-D)
we compare our methods against.

A. Setup

In all experiments, the robot drives according to
differential-drive kinematics: xR = (x, y, θ, v) and ẋR =
(v cos θ, v sin θ, φ, a), where x, y, θ and v are the
Cartesian position, the heading and the speed of the robot,
respectively. The control vector uR = (φ, a) contains the an-
gular velocity and the longitudinal acceleration respectively.
We discretize the robot dynamics, using the RK4 method
[31]. For all methods, the following limits are enforced:
v ∈ [0, 1.3]m

s , φ ∈ [−0.5π, 0.5π] rad
s , a ∈ [−10, 10] m

s2 . We
use a planning horizon T = 30 steps with an integration
timestep of 0.1 s. Q, W and S in Eq. 3 are diagonal
matrices with entries (1.5, 1.5, 0, 0), (0.0005, 0.0005) and



Fig. 3: Example frames from a simulation with human-robot
interactions, showing the difference in robot behavior with (right)
and without (left) using human motion prediction when planning.
The rows show different timesteps of the simulation (Top: t = 60,
Bottom: t = 82). As can be seen, planning without predictions
leads to more risky and assertive robot behavior that pushes human
from the original trajectories whereas anticipating human motion
makes the robot avoid humans e.g. by actively getting behind them.

(50, 50, 0, 0), respectively. As the different summands of the
objective function are responsible for different behaviors, Q,
W , S and g from Eq. 6, can be changed to influence the
overall robot behavior.

We use Taylor expansion for propagating the uncertainty.
If not explicitly noted otherwise, we consider only the
12 most probable modes of motion from the multi-modal
prediction and compose the set I in Eq. 2 with up to 6
humans who are closest to the robot. As initial guess for the
NLP we use the current state of the robot. The humans and
robot are considered to have a circular footprint with radii
of 0.2m and 0.3m, respectively.

Human motion predictions are generated using one of the
pre-trained, open-source, data-driven, state-of-the-art predic-
tors Trajectron++ [29] and S-GAN [28], or the constant
velocity model. The output format of the respective models
was modified to provide mean, variance and the mixture
weights of the respective predictions. If not stated otherwise,
Trajectron++ [29] was used in the experiment. To simulate
human motions and interactions, we use an open-source
implementation of the social force model [32].

We adopt CasADi [33] to implement the NMPC con-
trollers (with just-in-time compilation) and IPOPT [34] as
numerical optimization back-end. All experiments run on a
single core of a Xeon E5-1620 CPU and 32 GB of RAM.
Methods and experiments are implemented in Python3.

B. Testing Scenarios
We run our experiments in two scenarios. Both run for

a specific amount of time and the robot is given a random
goal location upon successfully navigating to the latest one.
The first scenario is a simulation inspired by the Edinburgh
pedestrian dataset [35] seen in Figure 4a. We have replicated
the original dataset in simulation by defining start and goal
locations that create motion patterns that are consistent with
the dataset. This simulation involves 50 humans moving
between the target areas, as visualized in Figure 4b. The
humans interact according to the social force model [32] and
get a new goal assigned as soon as they reach their current
one. In some experiments the robot also interacts with the
humans. The scenario runs for 2000 seconds and allows us to

(a) (b)

Fig. 4: (a) Visualization of the Edinburgh pedestrian dataset [35],
and (b) our analogous simulation. The goals of the humans in the
simulation are randomly sampled within the red marked areas. The
robot’s goal is assigned randomly. The robot and its past path
are shown in green. The humans, their past paths and motion
predictions are shown in blue.

evaluate and compare navigation capabilities in large, open
environments, cluttered with dynamic obstacles.

In the second scenario, we use the THÖR dataset [6] with
three static obstacles (see Figure 1). We replay 1000 seconds
of the recorded real-world human trajectories. Therefore,
we do not rely on interactive motion simulation from the
social force model. Importantly, this dataset was recorded
in an environment with walls and polygonal obstacles. To
account for these, we extend the NMPC formulation in Eq. 2
with dual variables and constraints according to Section 3-
A of [36].1 This scenario allows us to assess the navigation
capabilities amongst real humans. Importantly it also lets us
verify the results we obtain from the first scenario.

C. Metrics

Relevant metrics to assess the performance of the proposed
approach include a combination of navigation/computational
efficiency and safety indices. Efficiency indices are: ngoals,
the number of goals reached by the robot in the experiment;
Tg,avg [s], average time the robot needs to reach a goal;
lp,avg [m], average path length; Topt,avg [s], average opti-
mization time for one NLP iteration; Tv=0 [%], time in which
the robot is stopped. Safety indices include: dh,avg [m],
average distance the robot keeps to the closest human;
rfeas [%], iterations for which a feasible solution is available;
Tcol [%], time in which the robot is in collision with a human.
Metrics labeled with [%] are given as percentages of the total
scenario duration.

D. Baselines

We compare our cost-based approach with different gains
g in Eq. 6 (denoted as MMCA-gain) to the following state-
of-the-art methods for local motion planning and control:

1For space reasons we do not write out the full modifications and refer
the interested reader to the article.



Method ngoals ↑ Tg,avg [s] ↓ lp,avg [m] ↓ Tv=0 [%] ↓ dh,avg [m] ↑ rfeas [%] ↑ Tcol [%] ↓
noPred 234 8.48 8.10 22.0 1.43 91.3 6.00

Single-MCA-5 204 9.79 10.45 13.8 2.02 98.8 0.80
Single-MCA-10 122 16.27 17.44 12.0 2.34 99.4 0.45

MMCA-5 204 9.78 11.03 9.3 2.07 99.6 0.21
MMCA-10 127 15.67 17.06 10.9 2.53 99.7 0.21
MMCA-15 106 18.80 20.03 11.7 3.39 99.9 0.03

CC 120 16.52 8.93 51.0 1.47 51.2 4.76
MultiCC 39 45.74 7.84 82.6 1.35 17.7 5.72

GA3C-CADRL 194 10.27 11.88 7.9 2.04 n.a. 4.46
DWA 27 66.91 47.50 18.2 1.82 n.a. 3.54

TABLE I: Performance of our MMCA approach (in bold) against other state-of-the-art controllers in an invisible robot experiment.
Arrows indicate for which columns a higher (↑) or lower (↓) value is better.

Method ngoals ↑ Tg,avg [s] ↓ lp,avg [m] ↓ Tv=0 [%] ↓ dh,avg [m] ↑ rfeas [%] ↑
noPred 253 7.90 8.39 14.0 1.38 95.8

Single-MCA-5 190 10.42 11.48 10.7 1.99 99.9
Single-MCA-10 132 15.10 16.27 12.0 2.39 100.0

MMCA-5 219 9.13 10.19 9.6 2.04 100.0
MMCA-10 163 12.13 13.03 11.8 2.29 100.0
MMCA-15 82 23.93 25.48 12.5 3.10 100.0

CC 110 18.17 8.86 55.2 1.40 47.1
GA3C-CADRL 179 11.17 13.75 2.2 2.58 n.a.

DWA 20 99.53 71.87 17.7 2.27 n.a.

TABLE II: Performance of our MMCA approach (in bold) against other state-of-the-art controllers in a human-robot interaction experiment.

Prediction Control ngoals ↑ dh,avg [m] ↑ Tcol [% ↓
CVM Single-MCA-5 189 2.05 0.40

Trajectron++ Single-MCA-5 204 2.02 0.80
Trajectron++ MMCA-5 204 2.07 0.21

S-Gan MMCA-5 201 2.05 0.18

TABLE III: Comparison of our cost-based method using different
human motion predictors in an invisible robot experiment.

a deep reinforcement learning approach based on an actor-
critic architecture (GA3C-CADRL) [21]; the Dynamic Win-
dow Approach (DWA) [13]; a uni-modal chance constraint
formulation (CC) [17] with 3% risk of collision; and a
multi-modal version of chance constraint NMPC (MultiCC,
as in Nair et al. [11]) which constrain on every mode of
the prediction as if it were an individual trajectory. We
choose these baselines so we can appropriately compare our
approach with navigation methods from different domains.
To investigate the influence that multi-modal predictions have
on the collision avoidance capabilities in the first place,
we include two more approaches in our comparisons: An
NMPC controller that uses no predictions, by considering the
humans as static obstacles (noPred), only imposing collision
avoidance constraints for the current position of the humans;
and a uni-modal version of our approach (denoted as Single-
MCA) by only considering the most likely predicted mode
in the cost formulation.

VI. RESULTS AND DISCUSSION

We conduct 5 experiments to investigate different proper-
ties and compare our approach to the baselines in different
ways. The first four experiments are performed in the first
scenario described in Section V-B (i.e. Edinburgh simulated
data) and the fifth experiment is done in the second scenario
(i.e. real-world THÖR data).

A. Experiments and Results
1) Invisible Robot: The first experiment is an invisible

robot experiment. That is, the robot is aware of the humans

No. humans ngoals ↑ dh,avg [m] ↑ Topt,avg [s] ↓
4 218 1.99 0.020
6 205 2.05 0.026
8 195 2.06 0.031
10 198 2.17 0.034

TABLE IV: Performance of MMCA-5 when varying the number of
humans in the invisible robot experiment.

Method ngoals ↑ dh,avg [m] ↑ Tcol [%] ↓
noPred 169 2.47 4.98

Single-MCA-5 123 2.94 1.66
MMCA-5 137 2.91 1.08

MMCA-10 112 3.21 0.61
MMCA-15 89 3.56 0.98

CC 99 2.50 4.34

TABLE V: Experiment with 1000 seconds of data replayed from
the THÖR dataset. Results of our MMCA cost are in bold.

locations and will try to avoid them, but not vice-versa. Thus
collisions can occur if the robot is not avoiding the humans.
Results are reported in Table I.

2) Human Robot Interaction: In the second experiment,
the robot is visible to the humans and thus humans will
actively try to keep a minimum safe distance to the robot.
Thus, collisions happen very rarely (none were observed in
our experiment). This makes it harder to evaluate the colli-
sion avoidance performance of the methods but nevertheless
provides insights into their capabilities to navigate amongst
humans. Results are presented in Table II.

3) Different Predictors: In the third experiment, we in-
vestigate the influence of different prediction methods on
collision avoidance in an invisible robot experiment. For this,
we run the experiment with Trajectron++ [29], S-Gan [28],
and the constant velocity model (CVM). We also investigate
the effects of using only the most likely mode of motion from
Trajectron++ (Single-MCA-5). Results are given in Table III.

4) NMPC Efficiency: In the fourth experiment, we study
optimization time for one NMPC iteration, which translates
to the runtime of the approach, in an invisible robot exper-



iment. As explained in Section V, we only consider the n
closest humans in the NLP. This experiment evaluates our
method for different values of n to see how this number
influences optimization time and safety (results in Table IV).

5) THÖR Dataset: The fifth experiment evaluates and
compares our method in the second scenario, using the
THÖR dataset [6] with real-world human trajectories. As
we are replaying recorded data, this is also an invisible robot
experiment. Results are given in Table V.

B. Discussion
In the following, we discuss the performance of our

method compared to the baselines described in Section V-D.
MMCA-NMPC: Our method shows a notable improve-

ment over the baselines. Table I shows that we are able to
notably reduce the time the robot spends in collision with
humans to 0.03% in the best case. At worst, our method
improves the time in collision by a factor of 20, from around
4.5% for the baselines, to 0.21%. A qualitative evaluation
show that these collisions occur if humans change directions
unexpectedly. Then, it is possible that the robot cannot
avoid a collision in time, since it follows more restrictive
kinematics than the humans. The overall findings confirm
the hypotheses we outline in the beginning of Section IV.
MMCA-NMPC competes with noPred and GA3C-CADRL
in terms of task efficiency, even reducing the time the robot
is standing still or being frozen. The use of g in Eq. 6 works
as intended, improving safety and increasing the average
distance to the humans (3.39 m for MMCA-15 vs. 2.07 m
for MMCA-5), at the expense of less efficient navigation
(108 goals reached for MMCA-15 vs. 204 for MMCA-5).
Our approach arguably performs best overall in the human-
robot interaction experiment (see Table II), considering its
good performance in all metrics. The results of Single-MCA
NMPC suggest that, while the use of multi-modal predictions
seems to benefit performance and safety, the choice of not
defining constraints on predictions improves performance
notably over the other approaches. However, during testing
we find that constraints on the current human position are
still helpfull to prevent the robot from colliding in very
crowded and ambiguous situations. Table III shows that our
method is agnostic to the type of predictor that is used.
The improvements gained from using multi- over single-
modal predictions are not big in the measure of absolute
improvement. For this chain of arguments it is important to
point out that the single-mode prediction is actually the most
likely sub-component of the multi-modal one. Additionally,
the predictions made by Trajectron++ or S-Gan are not goal
driven, and span most of the space in front of the predicted
human. We believe that this is a clear limitation of many pre-
trained open-source available prediction methods that have
not been explicitly designed for a robot navigation use-case.

The NLP formulation in Eq. 2 is solved, on average, in
0.02–0.04 s (Table IV). The number of humans considered
influences the computational effort to solve the NLP, and the
trade-off between ngoals and dh,avg as expected.

The experiment on the THÖR dataset only involves
NMPC-based approaches, as the others do not have a
straightforward way of considering polygonal obstacle. This

experiment confirms the results from the other experiments
in a more complex and cluttered environment. The higher
values for Tcol can be attributed to the more restrictive
environment, making it harder to avoid collisions, and the
fact that humans “appear” in the dataset which cannot be
foreseen by the prediction. The experiment shows that our
approach works in real scenarios with recorded human mo-
tion data, and can be used in synergy with other NMPC based
trajectory planning methods like static obstacle avoidance.

CC-NMPC: Chance-Constrained NMPC seems to struggle
in 2D cluttered dynamic environments, as it is only able to
find a feasible solution in about 50% of iterations (rfeas =
51.2% in Table I). This problem is reflected in the other
metrics as well. The accepted risk of collision is set to 3%, as
suggested by Zhu et al. [10], which corresponds to the time
in collision we observe in our experiments (Tcol = 4.95% in
Table I). The increase in collisions can be attributed to the
mismatch between the prediction and the actual trajectory, as
well as infeasible iterations for which the robot is receiving
decelerate-to-stop controls.

MultiCC-NMPC: The MultiCC approach has two major
problems and is only investigated in the first experiment.
The approach is rarely able to find a valid solution, leaving
the robot frozen for most of the time (Tv=0 = 82.6% in
Table I). Moreover, the time it takes to solve one iteration of
the NMPC is around 1.2 seconds. This is most likely due to
the number of constraints added to the NLP, which makes it
harder to find a feasible solution.

DWA: DWA performs poorly in the efficiency metrics
(ngoals, Tg,avg, lp,avg), but performs well in terms of collision
avoidance performance (Tcol = 3.45% in Table I). The
results indicate its inability to plan more complex local
trajectories. In challenging situations, DWA is not able to find
local trajectories that avoid collisions with all surrounding
humans, while also moving closer to the goal state.

noPred-NMPC: The NMPC controller that does not use
predictions (noPred) navigates efficiently as it works with no
information besides its goal state and the current position of
the humans. However, different from our approach, the time
in collision, as well as the average distance to humans, show
that the robot is much more prone to collisions (a factor
of 200 for Tcol in the worst case, see Table I). Also, when
evaluating the behavior qualitatively, the approach shows un-
desirable, assertive behavior and does not anticipate human
movement. Figure 3 shows how the trajectories generated
by the noPred-NMPC compare to the ones from MMCA-
NMPC in an identical scenario with human-robot interaction.
To reach its goal, noPred collides and pushes a human out
of its original trajectory.

GA3C-CADRL: For GA3C-CADRL we observe similar
results as reported in [21]. Its high time in collision compares
to the one from CC or noPred while the distance to humans
is notably higher. The similarities to noPred make sense as
this approach also does not explicitly consider human motion
prediction. This means the method has to consider future
human movement implicitly when generating controls. Im-
portantly, GA3C-CADRL cannot be infeasible and therefore
stays maneuverable even in difficult situations. Even though
the efficiency is comparable to MMCA-5, our method is still



notably better at avoiding collisions (0.21% collision time for
MMCA-5 vs. 4.46% collision time for GA3C-CADRL).

VII. CONCLUSIONS

In this paper, we have introduced a novel Multi-Modal
Collision Avoidance method for NMPC-based motion plan-
ning in cluttered dynamic environments. Our novel formula-
tion uses stochastic multi-modal human motion predictions
to achieve efficient and smooth trajectory planning while
actively and reliably avoiding collisions. Our approach sig-
nificantly outperforms state-of-the-art methods in realistic
cluttered dynamic environments. The experiments show that
our approach achieves at least 20 times better collision
avoidance while being as least as efficient as the compared
baselines. The experiments confirm that the method can
solve the underlying NLP fast enough for online use and
easily integrates with different human motion predictors. In
future work, we aim to incorporate intention-driven predic-
tion methods and explore the applicability of our approach
with different parameters and robot kinematics (e.g., higher
maximum velocity). We also want to systematically evaluate
our approach in real-world experiments with human-robot
interaction to better analyze its legibility. In doing so we plan
to release the approach as open source software to integrate
with common robotics and simulation frameworks.
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